

NOT EVERY GOOD IDEA WORKS EVERYWHERE

WILL IT WORK ELSEWHERE?

THE MATH BEHIND INSPIRE

INSPIRING SMART REPLICATION

INSPIRE™ helps you discover the replication potential of your innovation.

Find out if a sustainable urban solution, an innovative industrial technology, a successful policy incentive, or an efficient governance model can be effectively replicated across different local contexts and socio-economic conditions.

One Tool, Many Applications.

Smart Cities

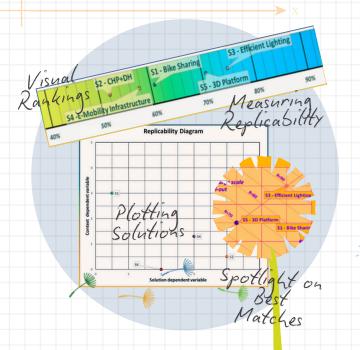
Analysing replicability of urban solutions to optimise mobility and infrastructure projects.

Energy and Environment

Evaluating transferability of clean energy technologies and sustainable energy solutions.

Industry and Technology

Assessing portability of industrial, technological and digital innovations.


Public Policy

Testing scalability of successful public incentives schemes, governance models, regulations and policy programs.

Cartesian-based replicability diagrams are at the core of the INSPIRE tool.

Through the dual assessment of solution-specific features and sitesensitive variables, INSPIRE™ uncovers optimal replication scenarios.

INSPIRE™ puts a number on replication prospects to optimise the transferability of innovation.

MULTI-SECTORAL APPLICATION

INSPIRE™ evaluates solutions for replicability across diverse domains, enabling the effective transfer of regulatory, technological, economic, infrastructural, and societal innovations.

MULTI-DIMENSIONAL ASSESSMENTS

INSPIRE™ evaluates solution deployment using a multidimensional framework based on context-specific regulatory, technological, environmental, economic, and socio-cultural factors.

DATA-DRIVEN INSIGHTS

INSPIRE™ uses a mathematical model to match solution-specific characteristics with context-dependent conditions and reveal replication potential.

